Highly efficient metal organic framework (MOF)-based copper catalysts for the base-free aerobic oxidation of various alcohols

نویسندگان

  • Abu Taher
  • Dong Wook Kim
  • Ik - Mo Lee
چکیده

Copper (Cu) containing metal organic frameworks (MOFs) are found to be highly efficient heterogeneous catalysts for oxidation of various alcohols. A wide range of alcohols, including alcohols containing inactive hetero-aryl and long-chain alkyl units, are selectively converted into their corresponding products. The catalytic efficiency of the Cu containing MOFs, along with the co-catalyst 2,2,6,6-tetramethyl-piperidyl1-oxy (TEMPO), was demonstrated by the high conversion of the reactants with 100% selectivity under base-free conditions. The use of an inexpensive copper containing catalyst, the broad substrate scope, and the open air conditions and absence of base additive make this protocol very practical. The catalyst maintained a unique structural framework and it could be reused at least five times without significant loss of activity.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Catalytic Aerobic Oxidation of Alkenes by Ag@Metal Organic Framework with High Catalytic Activity and Selectivity

By coupling of Fe2O3@SiO2 particles with metal organic Framework (MOF) the magnetic MOF structure was fabricated. Precipitation and hydrothermal methods were applied for synthesis of core and MOF. Silver nanoparticles were deposited on nickel based metal organic framework surface and magnetic Fe2O3@SiO2@MOF@Ag was obtained. Because of strong coupling between silver nanoparticles and metal organ...

متن کامل

Mn-Metal Organic Framework as Heterogenous Catalyst for Oxidation of Alkanes and Alkenes

Manganese metal-organic framework (Mn-MOF) containing Mn2+ ions, benzenetricarboxylic acid (BTC) and N,N-dimethylformamid (DMF) was prepared and used as catalyst for oxidation of alkenes such as 1,1-diphenylethylene, trans-stilbene, cyclohexene, norbornene, styrene and cyclooctene to epoxides with 33-92% conversion and 75-100% selectivity and oxidation of alkanes such as fluorene, adamantane, e...

متن کامل

Reusable oxidation catalysis using metal-monocatecholato species in a robust metal-organic framework.

An isolated metal-monocatecholato moiety has been achieved in a highly robust metal-organic framework (MOF) by two fundamentally different postsynthetic strategies: postsynthetic deprotection (PSD) and postsynthetic exchange (PSE). Compared with PSD, PSE proved to be a more facile and efficient functionalization approach to access MOFs that could not be directly synthesized under solvothermal c...

متن کامل

Efficient Copper-bisisoquinoline-based Catalysts for Selective Aerobic Oxidation of Alcohols to Aldehydes and Ketones

The selective oxidation of alcohols with molecular oxygen was efficiently completed in high conversion and selectivity using copper-bisisoquinoline-based catalysts under mild reaction condition. The effects of various parameters such as reaction temperature, reaction time, oxidant, ligands, etc, were studied. Solvent effect has been as well studied in ionic liquids [bmim]PF6, [omim]BF4 and [hmi...

متن کامل

Highly Electrocatalytic Oxidation of Bisphenol A at Glassy Carbon Electrode Modified with Metal-organic Framework MOF-508a and its Application in Real Sample Analysis

The use MOF-508a as sensing component for the precise discerning of bisphenol A via the electrochemical technique and its synthesis by a simple method were reported in the present study. Scanning electron microscopy (SEM) and x-ray diffraction (XRD) were applied to describe the MOF-508a’s composition and structure. In addition, MOF-508a was exploited so that the glassy carbon electrode could be...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017